11 research outputs found

    Entropic Measure for Localized Energy Configurations: Kinks, Bounces, and Bubbles

    Get PDF
    We construct a configurational entropy measure in functional space. We apply it to several nonlinear scalar field models featuring solutions with spatially-localized energy, including solitons and bounces in one spatial dimension, and critical bubbles in three spatial dimensions, typical of first-order phase transitions. Such field models are of widespread interest in many areas of physics, from high energy and cosmology to condensed matter. Using a variational approach, we show that the higher the energy of a trial function that approximates the actual solution, the higher its relative configurational entropy, defined as the absolute difference between the configurational entropy of the actual solution and of the trial function. Furthermore, we show that when different trial functions have degenerate energies, the configurational entropy can be used to select the best fit to the actual solution. The configurational entropy relates the dynamical and informational content of physical models with localized energy configurations.Comment: 5 pages, 2 PDF figures, uses RevTex4. v2: Modified the normalization condition in the entropy calculation to be more general and the figures were replaced to reflect that. Additional comments were added for clarity. v3: Minor rewordings, version to be published in Physics Letters

    Derivative Pricing using Quantum Signal Processing

    Full text link
    Pricing financial derivatives on quantum computers typically includes quantum arithmetic components which contribute heavily to the quantum resources required by the corresponding circuits. In this manuscript, we introduce a method based on Quantum Signal Processing (QSP) to encode financial derivative payoffs directly into quantum amplitudes, alleviating the quantum circuits from the burden of costly quantum arithmetic. Compared to current state-of-the-art approaches in the literature, we find that for derivative contracts of practical interest, the application of QSP significantly reduces the required resources across all metrics considered, most notably the total number of T-gates by 16\sim 16x and the number of logical qubits by 4\sim 4x. Additionally, we estimate that the logical clock rate needed for quantum advantage is also reduced by a factor of 5\sim 5x. Overall, we find that quantum advantage will require 4.74.7k logical qubits, and quantum devices that can execute 10910^9 T-gates at a rate of 4545MHz. While in this work we focus specifically on the payoff component of the derivative pricing process where the method we present is most readily applicable, similar techniques can be employed to further reduce the resources in other applications, such as state preparation

    Generation of Coherent Structures After Cosmic Inflation

    Get PDF
    We investigate the nonlinear dynamics of hybrid inflation models, which are characterized by two real scalar fields interacting quadratically. We start by solving numerically the coupled Klein-Gordon equations in static Minkowski spacetime, searching for possible coherent structures. We find long-lived, localized configurations, which we identify as a new kind of oscillon. We demonstrate that these two-field oscillons allow for "excited" states with much longer lifetimes than those found in previous studies of single-field oscillons. We then solve the coupled field equations in an expanding Friedmann-Robertson-Walker spacetime, finding that as the field responsible for inflating the Universe rolls down to oscillate about its minimum, it triggers the formation of long-lived two-field oscillons, which can contribute up to 20% of the total energy density of the Universe. We show that these oscillons emerge for a wide range of parameters consistent with WMAP 7-year data. These objects contain total energy of about 25*10^20 GeV, localized in a region of approximate radius 6*10^-26 cm. We argue that these structures could have played a key role during the reheating of the Universe.Comment: 12 pages, 10 .pdf figures, uses RevTex4; v2: expanded discussion in section IV, accepted for publication in Phys.Rev. D. Results remain the sam

    Option Pricing using Quantum Computers

    Full text link
    We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.Comment: Fixed a typo. This article has been accepted in Quantu

    Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation to the Electroweak Scale

    Get PDF
    Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and the bosonic sector of an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, we see about 4% of the final energy density in oscillons.Comment: 10 pages, RevTex4, 6 figures; v2: expanded SU(2) model section, added 2 figures, added one section, improved overall presentation and updated references, accepted for publication in Phys. Rev. D. Results remain the sam

    Information Content of Spontaneous Symmetry Breaking

    Get PDF
    We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially-extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry-breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially-localized, long-lived structures known as oscillons emerge in synchrony and remain until the field reaches equilibrium again. We show that the RCE correlates with the number-density of oscillons, thus offering a quantitative measure of the emergence of nonperturbative spatiotemporal patterns that can be generalized to a variety of physical systems.Comment: LaTeX, 9 pages, 5 figures, 1 tabl

    End-to-end resource analysis for quantum interior point methods and portfolio optimization

    Full text link
    We study quantum interior point methods (QIPMs) for second-order cone programming (SOCP), guided by the example use case of portfolio optimization (PO). We provide a complete quantum circuit-level description of the algorithm from problem input to problem output, making several improvements to the implementation of the QIPM. We report the number of logical qubits and the quantity/depth of non-Clifford T-gates needed to run the algorithm, including constant factors. The resource counts we find depend on instance-specific parameters, such as the condition number of certain linear systems within the problem. To determine the size of these parameters, we perform numerical simulations of small PO instances, which lead to concrete resource estimates for the PO use case. Our numerical results do not probe large enough instance sizes to make conclusive statements about the asymptotic scaling of the algorithm. However, already at small instance sizes, our analysis suggests that, due primarily to large constant pre-factors, poorly conditioned linear systems, and a fundamental reliance on costly quantum state tomography, fundamental improvements to the QIPM are required for it to lead to practical quantum advantage.Comment: 38 pages, 15 figure

    Quantum Resources Required to Block-Encode a Matrix of Classical Data

    No full text
    We provide a modular circuit-level implementation and resource estimates for several methods of block-encoding a dense N×NN\times N matrix of classical data to precision ϵ\epsilon; the minimal-depth method achieves a TT-depth of O(log(N/ϵ)),\mathcal {O}(\log (N/\epsilon)), while the minimal-count method achieves a TT-count of O(Nlog(log(N)/ϵ))\mathcal{O} (N \log(\log(N)/\epsilon)). We examine resource tradeoffs between the different approaches, and we explore implementations of two separate models of quantum random access memory. As a part of this analysis, we provide a novel state preparation routine with TT-depth O(log(N/ϵ))\mathcal {O}(\log (N/\epsilon)), improving on previous constructions with scaling O(log2(N/ϵ))\mathcal {O}(\log ^{2} (N/\epsilon)). Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms
    corecore